
Annotation-based Controller

Summary

Spring 2.5 introduces an approach for writing annotated Web MVC controllers, which we haven't been

blogging about much yet.

Main difference from and improvement with existing hierarchy controllers such as

SimpleFormController and MultiActionController implementing interface controller are as follows:

1. Setting using Annotation: define the information set based on XML using annotation.

2. Softened Method Signature: select the return type and parameter of Controller method more

diversely as needed.

3. Controller of POJO-Style: no need to implement specific interface during Controller development

or to inherit the specific class. However, can easily implement functions provided by existing
hierarchy controller such as form processing or multiple actions.

Explain the example of implementing the form processing created with hierarchy Controller using

@Controller.

The controller of example code easycompany creates the same function(in addition, common Service,
DAO, JSP) with hierarchy Controller and @Controller respectively.

• Hierarchy Controller - package com.easycompany.controller.hierarchy
• @Controller - package com.easycompany.controller.annotation

Description

Configuration Using Annotation

It is essentially an alternative controller type supported by the DispatcherServlet / DispatcherPortlet,

not implementing a specific interface but rather using annotations to express request mappings for

specific handler methods. It is primarily a next-generation style for implementing multi-action

controllers.

@MVC enables MVC programming more conveniently by setting annotation in Controller code.
Flexible model transfer - model transfer via a name/value Map supports easy integration with any view

Name Description

@Controller Controllers are the components that form the 'C' part of the MVC

@RequestMapping
Handler mappings handle the execution of a list of pre- and post-processors and

controllers that will be executed if they match certain criteria

@RequestParam View resolvers are components capable of resolving view names to views

@ModelAttribute View resolvers are components capable of resolving view names to views

@SessionAttributes A multipart file resolver offers the functionality to process file uploads from HTML forms

@Controller

Only @Controller shall be attached to written classes to create the controller in @MVC. It is not
necessary to realize or inherit a specific class.

package com.easycompany.controller.annotation;

@Controller

public class LoginController {

 ...

}

As mentioned in DefaultAnnotationHandlerMapping earlier, declare package containing @controller

using <context:component-scan> tag.
Use filters such as include, exclude if scanning @Controller only.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:p="http://www.springframework.org/schema/p"

 xmlns:context="http://www.springframework.org/schema/context"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

 http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context-2.5.xsd">

 <context:component-scan base-package="com.easycompany.controller.annotation" />

</beans>

@RequestMapping

@RequestMapping is an annotation used to map which controller or method should be processed on
requests.

Following is the property used by @RequestMapping.

Name Type Description

value String[]

Grant the mapping conditions with URL value.

Indicate like @RequestMapping(value=”/hello.do”) or

@RequestMapping(value={”/hello.do”, ”/world.do” }),

can be indicated as @RequestMapping(”/hello.do”) since it is default value.

Use the pattern matching of Ant-Style like ”/myPath/*.do”.

method RequestMethod[]

Grant the HTTP Request method value as mapping condition.

Enable mapping only when HTTP request method value matches.

Indicate in the form of @RequestMapping(method = RequestMethod.POST).

Available methods are GET, POST, HEAD, OPTIONS, PUT, DELETE, TRACE.

params String[]

Grant the HTTP Request parameter as mapping condition.

If params=“myParam=myValue”, there should parameter of myParam in

HTTP Request URL, and mapping if the value is myValue.

Condition can be given with parameter name such as params=“myParam”

and ”!myParam” can map the requests without parameter called myParam.

If condition is given like @RequestMapping(params={“myParam1=myValue”,

“myParam2”, ”!myParam3”}), HTTP Request should have myValue value

called parameter myParam1. There should be myParam2 parameter and no

parameter of myParam3.

@RequestMapping can be set in the class unit(type level) or method unit(method level).

type level
If there is a /hello.do request, hello method of HelloController is implemented.

@Controller

@RequestMapping("/hello.do")

public class HelloController {

 @RequestMapping //mapping is properly performed when defining URL at type level and

indicating @RequestMapping over the method that will take charge of request processing even if there

is one method in controller.

 public String hello(){

 ...

 }

}

method level

/If hello.do request is received, hello method,

/helloForm.do request is GET type, helloGet method is performed. If it is POST type, helloPost
method is performed.

@Controller

public class HelloController {

 @RequestMapping(value="/hello.do")

 public String hello(){

 ...

 }

 @RequestMapping(value="/helloForm.do", method = RequestMethod.GET)

 public String helloGet(){

 ...

 }

 @RequestMapping(value="/helloForm.do", method = RequestMethod.POST)

 public String helloPost(){

 ...

 }

}

type + method level

Both can be set. In this case, cannot define value(URL) of type level에 설정한 @RequestMapping set in

the type level at the method level again.

/If it is GET type at hello.do request, helloGet method is performed. If it is POST type, helloPost
method is performed.

@Controller

@RequestMapping("/hello.do")

public class HelloController {

 @RequestMapping(method = RequestMethod.GET)

 public String helloGet(){

 ...

 }

 @RequestMapping(method = RequestMethod.POST)

 public String helloPost(){

 ...

 }

}

Let’s implement LoginController, the example code implemented by inheriting AbstractController as the

Controller based on annotation.

Existing LoginController is the controller implementing handleRequestInternal method when the HTTP
method of request to URL /loginProcess.do is POST.

package com.easycompany.controller.annotation;

...

@Controller

public class LoginController {

 @Autowired

 private LoginService loginService;

 @RequestMapping(value = "/loginProcess.do", method = RequestMethod.POST)

 public String login(HttpServletRequest request) {

 String id = request.getParameter("id");

 String password = request.getParameter("password");

 Account account = (Account) loginService.authenticate(id,password);

 if (account != null) {

 request.getSession().setAttribute("UserAccount", account);

 return "redirect:/employeeList.do";

 } else {

 return "login";

 }

 }

}

@Autowired was used to call the service class in the above example code. See here for details.

@RequestParam

@RequestParam is an annotation to map controller method parameters and web request parameters.

Name Type Description

value String Parameter Name

required boolean a class offering caching support and, for example, the setting of the mimetype.

It is used in the method shown in the following code.

To bind the null value when the relevant parameter is not in Request object, indicate as required=false

like pageNo parameter.

Since name parameter is true for equired, if the name parameter is null,
org.springframework.web.bind.MissingServletRequestParameterException occurs.

@Controller

public class HelloController {

 @RequestMapping("/hello.do")

 public String hello(@RequestParam("name") String name, //If there is no required condition, the

default value is true, that is, required parameter. If parameter pageNo does not exist, Exception occurs.

 @RequestParam(value="pageNo", required=false) String pageNo){ //if

parameter pageNo does not exist, String pageNo is null.

 ...

 }

}

See the login method of LoginController created above obtains parameter ID and password using

getParameter method in Http Request.

It can be changed as follows by using @RequestParam.

package com.easycompany.controller.annotation;

...

@Controller

public class LoginController {

 @Autowired

 private LoginService loginService;

 @RequestMapping(value = "/loginProcess.do", method = RequestMethod.POST)

 public String login(

 HttpServletRequest request,

 @RequestParam("id") String id,

 @RequestParam("password") String password) {

 Account account = (Account) loginService.authenticate(id,password);

 if (account != null) {

 request.getSession().setAttribute("UserAccount", account);

 return "redirect:/employeeList.do";

 } else {

 return "login";

 }

 }

}

@ModelAttribute

The attribute of @ModelAttribute is as below:

Name Typee Description

value String Name of Model properties to bind.

Exceptions that are thrown during processing of the request get picked up by any of the handler

exception resolvers that are declared in the WebApplicationContext. Using these exception
resolvers allows you to define custom behaviors in case such exceptions get thrown

@ModelAttribute functions identically as ModelMap.addAttribute. It is used in two ways in the controller.

1.The binding of method return data and model attribute.

The logic saving the result data in ModelMap object after processing business logic(DB processing) in

method generally occurs.

...

 @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

 public String formBackingObject(@RequestParam("deptid") String deptid, ModelMap model) {

 Department department = departmentService.getDepartmentInfoById(deptid); //Get

department information data from DB.

 model.addAttribute("department", department); //save the data in the model object.

 return "modifydepartment";

 }

...

If selecting @ModelAttribute in method, the return data of relevant method is saved in ModelMap

object.

Above code can be changed as follows. When GET type of /updateDepartment.do calling is received

from the user, before formBackingObject method is executed, DefaultAnnotationHandlerMapping

executes (@ModelAttribute is declared)getEmployeeInfo using

org.springframework.web.bind.annotation.support.HandlerMethodInvoker, and saves the result in

ModelMap object.

As a result, getEmployeeInfo method performs ModelMap.addAttribute(“department”,
departmentService.getDepartmentInfoById(…)) work.

...

 @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

 public String formBackingObject() {

 return "modifydepartment";

 }

 @ModelAttribute("department")

 public Department getEmployeeInfo(@RequestParam("deptid") String deptid){

 return departmentService.getDepartmentInfoById(deptid); //Get department

information from DB.

 }

 or

 public @ModelAttribute("department") Department

getDepartmentInfoById(@RequestParam("deptid") String deptid){

 return departmentService.getDepartmentInfoById(deptid);

 }

...

2.The binding of method parametor and model attribute

@ModelAttribute can be used for binding with the parameter of specific attribute method of ModelMap

object.

As shown below, declare ”@ModelAttribute(“department”) Department department” in the

parameter of method and (Department)ModelMap.get(“department”) value is bound in

department.

Accordingly, if it is the code shown below, formBackingObject method parameter department contains
the Department data that getDepartmentInfo method saves in ModelMap object.

...

 @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

 public String formBackingObject(@ModelAttribute("department") Department department)

{ //department contains the data obtained from getDepartmentInfo.

 System.out.println(employee.getEmployeeid());

 System.out.println(employee.getName());

 return "modifydepartment";

 }

 @ModelAttribute("department")

 public Department getDepartmentInfo(@RequestParam("deptid") String deptid){

 return departmentService.getDepartmentInfoById(deptid); //Get department

information data from DB.

 }

...

@SessionAttributes

@SessionAttribute is an annotation used in saving and maintaining the model attribute in the session.
@SessionAttribute can declare at the type level. The related attriuutes are as following.

Name Type Description

types Class[] Class that implements WebApplicationContext

value String[] Class that implements WebApplicationContext

Flexible Method Signature

The method of the controller that applied @RequestMapping can utilize the below method parameters
and return types.

Since there is no restriction to expand the specific class or to implement interface, it has flexible
method signature compared to hierarchy controller.

Method Parameter of @Controller

Available method parameter is as follows.

• Servlet API – Servlet APIs related to request, response and sessions such as ServletRequest,

HttpServletRequest, HttpServletResponse, HttpSession.

• WebRequest, NativeWebRequest - org.springframework.web.context.request.WebRequest,

org.springframework.web.context.request.NativeWebRequest

• java.util.Locale

• java.io.InputStream / java.io.Reader

• java.io.OutputStream / java.io.Writer

• @RequestParam –annotation to use to bind argument of method and parameter of HTTP

Request.

• java.util.Map / org.springframework.ui.Model / org.springframework.ui.ModelMap –

model data to deliver to view.

• Command/form object – can reduce alias using @ModelAttribute, command object of binding

parameter delivered to HTTP Request.

• Errors, BindingResult – object saving the result data after

org.springframework.validation.Errors / org.springframework.validation.BindingResult

validation .

• SessionStatus – used to remove relevant session when processing

org.springframework.web.bind.support.SessionStatus session form.

Method can use the parameter in the random order. Provided, however, that if BindingResult is used as
an argument of method, command object for binding should come in front.

public String updateEmployee(...,@ModelAttribute("employee") Employee employee,

 BindingResult bindingResult,...) <!-- (O) -->

public String updateEmployee(...,BindingResult bindingResult,

 @ModelAttribute("employee") Employee employee,...) <!-- (X) -->

To use other types as method parameter?

The spring framework provides the interface,

org.springframework.web.bind.support.WebArgumentResolver, to enable custom arguments to be used

as a method parameter which is not mentioned above. For examples using WebArgumentResolver,
follow this link.

Method return type of @Controller

Available method return type is as follows.

• ModelAndView – contains view information and model object containing the return data of

method applied with @ModelAttribute and command object.

• @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

• public ModelAndView formBackingObject(@RequestParam("deptid") String deptid) {

• Department department =

departmentService.getDepartmentInfoById(deptid);

• ModelAndView mav = new ModelAndView("modifydepartment");

• mav.addObject("department", department);

• return mav;

• }

• or

• public ModelAndView formBackingObject(@RequestParam("deptid") String deptid,

ModelMap model) {

• Department department =

departmentService.getDepartmentInfoById(deptid);

• model.addAttribute("department", department);

• ModelAndView mav = new ModelAndView("modifydepartment");

• mav.addAllObjects(model);

• return mav;

 }

• Model(or ModelMap) – Return data of method applied with @ModelAttribute and command

object is contained in Model object.

View name is determined by RequestToViewNameTranslator using URL. Following is the method

that implementation class of interface RequestToViewNameTranslator,

DefaultRequestToViewNameTranslator, determines the View name.

• http://localhost:8080/gamecast/display.html -> display

• http://localhost:8080/gamecast/displayShoppingCart.html -> displayShoppingCart

http://localhost:8080/gamecast/admin/index.html -> admin/index

 @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

 public Model formBackingObject(@RequestParam("deptid") String deptid, Model model) {

 Department department = departmentService.getDepartmentInfoById(deptid);

 model.addAttribute("department", department);

 return model;

 }

or

 @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

 public Model formBackingObject(@RequestParam("deptid") String deptid) {

 Department department = departmentService.getDepartmentInfoById(deptid);

 Model model = new ExtendedModelMap();

 model.addAttribute("department", department);

 return model;

 }

• Map – return data of method applied with @ModelAttribute and command object is contained in

the Map object, and the view name is also determined by RequestToViewNameTranslator.

• @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

• public Map formBackingObject(@RequestParam("deptid") String deptid) {

• Department department =

departmentService.getDepartmentInfoById(deptid);

• Map model = new HashMap();

• model.put("department", department);

• return model;

• }

• or

• @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

• public Map formBackingObject(@RequestParam("deptid") String deptid, Map model)

{

• Department department =

departmentService.getDepartmentInfoById(deptid);

• model.put("department", department);

• return model;

 }

• String – String value to return becomes View name. Return data of method applied with

@ModelAttribute and command object is contained in Model(or ModelMap). Model(or ModelMap)

object to return should be declared in argument of relevant method.

• <!--(O)-->

• @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

• public String formBackingObject(@RequestParam("deptid") String deptid, ModelMap

model) {

• Department department =

departmentService.getDepartmentInfoById(deptid);

• model.addAttribute("department", department);

• return "modifydepartment";

• }

•

• <!--(X)-->

• @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

• public String formBackingObject(@RequestParam("deptid") String deptid) {

• Department department =

departmentService.getDepartmentInfoById(deptid);

• ModelMap model = new ModelMap();

• model.addAttribute("department", department);

• return "modifydepartment";

 }

• View – Return View. Return data of method applied with @ModelAttribute and command object

is contained in Model(or ModelMap).

• void – If method processes direct response using ServletResponse / HttpServletResponse. View
name is determined by RequestToViewNameTranslator.

Controller of POJO-Style

@MVC does not need to inherit specific classes or implement certain interfaces in developing the

controller. It is not mandatory to refer to ServletAPI on the method of the controller. The development
is possible with more flexible method signature.

We’ll show that the functions provided at existing controller can be still implemented even if it becomes

closer to POJO-Style by implementing the form processing action of SimpleFormController with
@Controller.

FormController by SimpleFormController -> @Controller

We’ll create com.easycompany.controller.hierarchy.UpdateDepartmentController created as an

example while describing SimpleFormController earlier, using @ModelAttribute and @RequestMapping

with @Controller.

Use the same JSP source. See the example screen image and JSP code here.
Existing UpdateDepartmentController is performed in 3 methods.

• referenceData – get the upper department information, the reference data required in input

form, and save in Map object. After that, this Map object is saved in ModelMap object by spring

internal logic.

• formBackingObject – return the department data to be entered in initial input form when it is

GET type calling. This data is also saved in ModelMap object.
• onSubmit – called at POST transmission and process the form transmission.

package com.easycompany.controller.hierarchy;

...

public class UpdateDepartmentController extends SimpleFormController{

 private DepartmentService departmentService;

 public void setDepartmentService(DepartmentService departmentService){

 this.departmentService = departmentService;

 }

 //Since upper department list(selectbox) is not in department information class, get the upper

department list data from DB and configure with separate reference data.

 @Override

 protected Map referenceData(HttpServletRequest request, Object command, Errors errors)

throws Exception{

 Map referenceMap = new HashMap();

 referenceMap.put("deptInfoOneDepthCategory",departmentService.getDepartmentIdNameList

("1")); //Get upper department information and put in Map.

 return referenceMap;

 }

 @Override

 protected Object formBackingObject(HttpServletRequest request) throws Exception {

 if(!isFormSubmission(request)){ // If it is GET request

 String deptid = request.getParameter("deptid");

 Department department =

departmentService.getDepartmentInfoById(deptid);//result of inquiring DB with department ID is

reflected in the command object.

 return department;

 }else{ // If POST request

 //Call formBackingObject of AbstractFormController and the default data

binding occurs between command objects set and parameter of request object.

 return super.formBackingObject(request);

 }

 }

 @Override

 protected ModelAndView onSubmit(HttpServletRequest request,

 HttpServletResponse response, Object command, BindException errors)

throws Exception{

 Department department = (Department) command;

 try {

 departmentService.updateDepartment(department);

 } catch (Exception ex) {

 return showForm(request, response, errors);

 }

 return new ModelAndView(getSuccessView(), "department", department);

 }

}

com.easycompany.controller.annotation.UpdateDepartmentController created with @Controller consists

of 3 methods.

Different from existing UpdateDepartmentController, the hierarchy controller, does not require

overriding, method name can be created freely.
Select the name of method same as SimpleFormController for easy comparison.

• referenceData – get the upper department information, reference data required for input form

and save in ModelMap.(by @ModelAttribute)

• formBackingObject – take charge of processing when it is GET type calling. Get the department

data for initial input form configuration and save in ModelMap.
• onSubmit – called at POST transmission, and process the form transmission.

(close to POJO) framework codes are hidden and business contents can be expressed more intuitively.

package com.easycompany.controller.annotation;

...

@Controller

public class UpdateDepartmentController {

 @Autowired

 private DepartmentService departmentService;

 //Since upper department list(selectbox) is not in department information class, get the data

of upper department list from DB and configure as a separate reference data.

 @ModelAttribute("deptInfoOneDepthCategory")

 public Map<String, String> referenceData() {

 return departmentService.getDepartmentIdNameList("1");

 }

 // Get the department information data of relevant department number and fill out the input

form.

 @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.GET)

 public String formBackingObject(@RequestParam("deptid") String deptid, ModelMap model) {

 Department department = departmentService.getDepartmentInfoById(deptid);

 model.addAttribute("department", department); //commandName of form tag should

agree with attribute name. <form:form commandName="department">.

 return "modifydepartment";

 }

 //If the user finishes modification of data and press the Save button, the service(DB) is called,

in charge of modification data.

 //If it is successfully saved, move to the department list page and if there is an error, move to

input form page again.

 @RequestMapping(value = "/updateDepartment.do", method = RequestMethod.POST)

 public String onSubmit(@ModelAttribute("department") Department department,

BindingResult bindingResult) {

 //validation code

 new DepartmentValidator().validate(department, bindingResult);

 if(bindingResult.hasErrors()){

 return "modifydepartment";

 }

 try {

 departmentService.updateDepartment(department);

 return "redirect:/departmentList.do?depth=1";

 } catch (Exception e) {

 e.printStackTrace();

 return "modifydepartment";

 }

 }

}

Reference

• The Spring Framework - Reference Documentation 2.5.6

• Spring Framework API Documentation 2.5.6

• SpringSource Team Blog,Annotated Web MVC Controllers in Spring 2.5, Juergen Hoeller

